- **6**. The computer-implemented method of claim **1**, wherein generating a recommended subrogation resolution using a machine learning algorithm further comprises:
  - comparing, at the one or more processors, damages data and services rendered data to a historical dataset for damages data and services rendered data; and
  - identifying, at the one or more processors, similarities and differences between the datasets.
  - 7. (canceled)
- **8**. The computer-implemented method of claim **1**, further comprising:
  - adding, at the one or more processors, the transaction to a block of transactions;
  - solving, at the one or more processors, a cryptographic puzzle based upon the block of transactions;
  - adding, at the one or more processors, the solution to the cryptographic puzzle to the block of transactions; and transmitting, at the one or more processors, the block of transactions to at least one other participant in the distributed ledger network.
- **9.** A computer-implemented method for interacting with a distributed ledger maintained by a plurality of participants, the method comprising:
  - receiving, at the one or more processors, a transaction related to a subrogation claim;
  - analyzing, at the one or more processors, the transaction related to the subrogation claim;
  - generating, at the one or more processors, a recommended subrogation resolution based upon the analysis of the transaction and using a machine learning algorithm including determining a subrogation amount for an at-fault insurer, and a not-at-fault insurer;
  - transmitting, at the one or more processors, a transaction including the recommended subrogation resolution to a smart contract stored on the distributed ledger; and
  - identifying a subrogation claimant with a first cryptographic public key, and identifying a subrogation defendant with a second cryptographic public key; and, subsequently, sending data including a message signed by private keys corresponding to the first and second public keys identifying the subrogation claimant and the subrogation defendant in the smart contract.
- 10. The computer-implemented method of claim 9, wherein analyzing the transaction related to the subrogation claim further comprises:
  - analyzing, at the one or more processors, damages data contained in the transaction; and
  - analyzing, at the one or more processors, services rendered data contained in the transaction.
- 11. The computer-implemented method of claim 9, wherein generating a recommended subrogation resolution using a machine learning algorithm further comprises:
  - executing, at the one or more processors, a machine learning algorithm using damages data and services rendered data included in the transaction.
- 12. The computer-implemented method of claim 9, wherein generating a recommended subrogation resolution using a machine learning algorithm further comprises:
  - comparing, at the one or more processors, damages data and services rendered data to a historical dataset for damages data and services rendered data; and
  - identifying, at the one or more processors, similarities and differences between the datasets.
  - 13. (canceled)

- **14**. A computer system for interacting with a distributed ledger, the system comprising:
  - a network interface configured to interface with a processor:
  - a memory configured to store non-transitory computer executable instructions and configured to interface with the processor; and
  - the processor configured to interface with the memory, wherein the processor is configured to execute the non-transitory computer executable instructions to cause the processor to:
  - monitor transactions on the distributed ledger;
  - identify a transaction related to a subrogation claim;
  - analyze the transaction related to the subrogation claim; generate a recommended subrogation resolution using a machine learning algorithm including determining a subrogation amount for an at-fault insurer, and a not-at-fault insurer;
  - transmit a transaction including the recommended subrogation resolution to a smart contract stored on the distributed ledger; and
  - identify a subrogation claimant with a first cryptographic public key, and identify a subrogation defendant with a second cryptographic public key; and, subsequently, send data including a message signed by private keys corresponding to the first and second public keys identifying the subrogation claimant and the subrogation defendant in the smart contract.
- 15. The computer system of claim 14, wherein to monitor transactions on the distributed ledger, the processor is further configured to execute the non-transitory computer executable instructions to cause the processor to:
  - monitor a smart contract stored at an address on the distributed ledger.
- **16**. The computer system of claim **14**, wherein to identify a transaction related to a subrogation claim, the processor is further configured to execute the non-transitory computer executable instructions to cause the processor to:
  - identify a subrogation ID in a transaction; and validate the subrogation ID.
- 17. The computer system of claim 14, wherein to analyze the transaction related to the subrogation claim, the processor is further configured to execute the non-transitory computer executable instructions to cause the processor to:
  - analyze damages data contained in the transaction; and analyze services rendered data contained in the transaction.
  - 18. (canceled)
- 19. The computer system of claim 14, wherein to generate a recommended subrogation resolution using a machine learning algorithm, the processor is further configured to execute the non-transitory computer executable instructions to cause the processor to:
  - compare the damages data and services rendered data to a historical dataset for damages data and services rendered data; and
  - identify similarities and differences between the datasets. **20**. (canceled)
- 21. The computer-implemented method of claim 1, wherein the claimant and defendant generate the public and private keys offline, and only the public keys are provided to other network participants.

\* \* \* \* \*